1. Digital Electronics

The circuit translates as follows: $\overline{A \bar{B}+C}$. This simplifies to:
$(\overline{A \bar{B}}) \bar{C}=(\bar{A}+\overline{\bar{B}}) \bar{C}=(\bar{A}+B) \bar{C}$. To be TRUE, both factors must be TRUE. This implies that C must equal 0 . The first factor gives 2 choices. If $\mathrm{A}=0$ then B can be either 1 or 0 . If $\mathrm{A}=1$ then B must equal 1 . The choices are $(*, 1,0)$ and $(0,0,0)$.

1. (*, 1,0$)$ and ($0,0,0$).

OR
$(0,1,0),(1,1,0)$, and $(0,0,0)$.

2. Digital Electronics

The circuit is equivalent to: $(\overline{A+B})((B \oplus C) D)$.
$2 \dot{\bar{A}} C D$
Substituting 0 for B gives : $(A+0)\left(\left(0^{\oplus} C\right) D\right)=(\bar{A})(C D)$
3. Boolean Algebra

$$
\begin{aligned}
& (A+B) \oplus(A B)=(\overline{A+B)}(A B)+(A+B)(\overline{A B})= \\
& \bar{A} \bar{B} A B+(A+B)(\bar{A}+\bar{B})=0+A \bar{A}+\bar{A} B+A \bar{B}+B \bar{B}= \\
& 0+0+A \oplus B+0=A \oplus B
\end{aligned}
$$

3. $A \oplus B$

4. Graph Theory

The adjacency matrix is constructed as follows:
4. 11

	A	B	C	D	E	F
A	0	1	1	1	0	0
B	1	0	0	0	0	1
C	1	0	0	0	0	0
D	0	0	1	0	1	0
E	1	0	0	0	0	1
F	0	0	0	0	1	0

5. Graph Theory

Number the vertices 1 through 10. Start with vertex 1 and draw the edges
5. 45
to vertices 2 through 10. There are 9 . Next draw the edges from vertex 2 to vertices 3 through 10. There are 8 . Repeating the process and summing the number of edges $(9+8+7+6+5+4+3+2+1=45)$.

