2001-2002

American Computer Science League

Contest #3

Junior Division Short Problem Solutions

1. The last time the 2 loops are executed prior to ending, J has a value of 1 and K has a value of 9 since K assumes values of $3,5,7$ and 9 . Therefore, B(1,9) is the last element modified	1. B(1,9)
2. Without any simplification, the circuit translates as follows:	
$A (\overline{A} + \overline{B})$	2. $A (\overline{A} + \overline{B})$
3. The circuit translates as follows : $\frac{1}{A + \overline{B} C}$	
Using DeMorgan's Theroem gives: \overline{A} (\overline{B} C). To be TRUE, both factors must be TRUE. A must always be 0. The second factor must be FALSE since the negation will make it true. Two possibilities exist. Either (\overline{B} , C) equals (*, 0) or (1, 1). There are 3 ordered triples that make the circuit TRUE.	3. (0,0,0), (0,1,0) and (0,1,1)
4. The squaring the adjacency matrix produces all the paths of length 2. Summing the elements gives 9 paths of length 2. $\begin{vmatrix} 1 & 1 & 1 \\ 0 & 0 & 1 \\ 1 & 0 & 0 \end{vmatrix} = \begin{vmatrix} 2 & 1 & 2 \\ 1 & 0 & 0 \\ 1 & 1 & 1 \end{vmatrix}$	4. 9
5. The cycles in the graph are: ABCA, ABCDA, ACA and ACDA	5.4