Junior Division Short Problem Solutions

1. The last time the 2 loops are executed prior to ending, J has a value of 1 and K has a value of 9 since K assumes values of $3,5,7$ and 9 .
2. $\mathrm{B}(1,9)$ Therefore, $\mathrm{B}(1,9)$ is the last element modified
3. Without any simplification, the circuit translates as follows:

$$
A(\bar{A}+\bar{B})
$$

2. $A(\bar{A}+\bar{B})$
3. The circuit translates as follows :

$$
A+\bar{B} C
$$

Using DeMorgan's Theroem gives: $\bar{A}(\overline{\bar{B}} C$). To be TRUE, both factors must be TRUE. A must always be 0 . The second factor must be FALSE since the negation will make it true. Two possibilities exist. Either (\bar{B}, C) equals $(*, 0)$ or $(1,1)$. There are 3 ordered triples that make the circuit TRUE.
4. The squaring the adjacency matrix produces all the paths of length 2 . Summing the elements gives 9 paths of length 2 .
4. 9

$$
\left|\begin{array}{lll}
1 & 1 & 1 \\
0 & 0 & 1 \\
1 & 0 & 0
\end{array}\right|^{2}=\left|\begin{array}{lll}
2 & 1 & 2 \\
1 & 0 & 0 \\
1 & 1 & 1
\end{array}\right|
$$

5. The cycles in the graph are: $\mathrm{ABCA}, \mathrm{ABCDA}, \mathrm{ACA}$ and ACDA
6. $(0,0,0),(0,1,0)$ and $(0,1,1)$
