2001	-2002
4001	-4004

American Computer Science League

Contest #3

Intermediate Division Solutions	
1. The circuit translates as follows: $(A + B)\overline{B}$. To be TRUE both factors must be TRUE. B must be equal to 0. Therefore, A must be equal to 1.	1. (1,0)
2. The circuit translates as follows: $(\overline{X} \ \overline{Y}) (Y \oplus \overline{Z})$. It simplifies to: $(X + \overline{Y}) (YZ + \overline{Y} \ \overline{Z}) = XYZ + X \ \overline{Y} \ \overline{Z} + \overline{Y} \ Y \ Z + \overline{Y} \ \overline{Y} \ \overline{Z} =$ $XYZ + X \ \overline{Y} \ \overline{Z} + \overline{Y} \ \overline{Z} = XYZ + \overline{Y} \ \overline{Z} (X + 1) = XYZ + \overline{Y} \ \overline{Z}$	2. $XYZ + \overline{Y} \overline{Z}$
3. The expression simplifies as follows: $\overline{A} \ B + \overline{A} \ \overline{C} + \overline{A} \ \overline{B} + \overline{B} \ C + A \ \overline{C} + \overline{B} \ \overline{C} = \\ (\overline{A} \ B + \overline{A} \ \overline{B}) + (\overline{B} \ C + \overline{B} \ \overline{C}) + (A \ \overline{C} + \overline{A} \ \overline{C}) = \\ \overline{A} (B + \overline{B}) + \overline{B} (C + \overline{C}) + \overline{C} (A + \overline{A}) = \\ \overline{A} + \overline{B} + \overline{C} = \overline{ABC} (note that \ \overline{A} \ \overline{B} \ \overline{C} \text{ is not equivalent})$	3. ABC
4. By definition a simple path is a path with no vertex repeated. Choice A is not a valid path. Choice B has vertex B repeated. Choice C is a a simple path. Choice D is not a valid path.	4. C
5. A "1" is placed in the matrix when a path exists. Otherwise, the matrix contains a "0". A B C D A 1 1 0 1 B 1 0 1 1 C 0 0 1 0 D 0 1 0 1	5. The matrix as shown at the left.