1. The circuit translates as follows: $(A+B) \bar{B}$.

To be TRUE both factors must be TRUE. B must be equal to 0 .

1. $(1,0)$

Therefore, A must be equal to 1 .
$\overline{\bar{X} Y})(Y \oplus \bar{Z})$. It simplifies to:
2. The circuit translates as follows: $(\bar{X} Y)(Y \oplus Z)$. It simplifies to: $(X+\bar{Y})(Y Z+\bar{Y} \bar{Z})=X Y Z+X \bar{Y} \bar{Z}+\bar{Y} Y Z+\bar{Y} \bar{Y} \bar{Z}=$
2. $X Y Z+\bar{Y} \bar{Z}$ $X Y Z+X \bar{Y} \bar{Z}+\bar{Y} \bar{Z}=X Y Z+\bar{Y} \bar{Z}(X+1)=X Y Z+\bar{Y} \bar{Z}$
3. The expression simplifies as follows:

$$
\begin{aligned}
& \bar{A} B+\bar{A} \bar{C}+\bar{A} \bar{B}+\bar{B} C+A \bar{C}+\bar{B} \bar{C}= \\
& (\bar{A} B+\bar{A} \bar{B})+(\bar{B} C+\bar{B} \bar{C})+(A \bar{C}+\bar{A} \bar{C})= \\
& \bar{A}(B+\bar{B})+\bar{B}(C+\bar{C})+\bar{C}(A+\bar{A})= \\
& \bar{A}+\bar{B}+\bar{C}=\overline{A B C} \quad \text { (note that } \bar{A} \bar{B} \bar{C} \text { is not equivalent) }
\end{aligned}
$$

4. By definition a simple path is a path with no vertex repeated. Choice A is not a valid path. Choice B has vertex B repeated. Choice C is a
5. C a simple path. Choice D is not a valid path.
6. $\overline{A B C}$
7. A " 1 " is placed in the matrix when a path exists. Otherwise, the matrix contains a " 0 ".

	A	B	C	D
A	1	1	0	1
B	1	0	1	1
C	0	0	0	1
D	0	0	1	0

5. The matrix as shown at the left.
