2001-2002

American Computer Science League

Contest #3

Classroom Division Short Problem Solutions

1. The last time the 2 loops are executed prior to ending, J has a value of 1 and K has a value of 9 since K assumes values of 3,5,7 and 9. Therefore, B(1,9) is the last element modified	1. B(1,9)
2. Without any simplification, the circuit translates as follows:	
$A (\overline{A} + \overline{B})$	2. $A (\overline{A} + \overline{B})$
3. The circuit translates as follows : $\frac{1}{A + \overline{B} C}$	
Using DeMorgan's Theroem gives: \overline{A} (\overline{B} C). To be TRUE, both factors must be TRUE. A must always be 0. The second factor must be FALSE since the negation will make it true. Two possibilities exist. Either (\overline{B} , C) equals (*, 0) or (1, 1). There are 3 ordered triples that make the circuit TRUE.	3. (0,0,0), (0,1,0) and (0,1,1)
4. The squaring the adjacency matrix produces all the paths of length 2. Summing the elements gives 9 paths of length 2. $\begin{vmatrix} 1 & 1 & 1 \\ 0 & 0 & 1 \\ 1 & 0 & 0 \end{vmatrix} = \begin{vmatrix} 2 & 1 & 2 \\ 1 & 0 & 0 \\ 1 & 1 & 1 \end{vmatrix}$	4. 9
5. The cycles in the graph are: ABCA, ABCDA, ACA and ACDA	5.4

American Computer Science League

Contest #3

Classroom Division Solutions	
6. The circuit translates as follows: $(A + B)\overline{B}$. To be TRUE both factors must be TRUE. B must be equal to 0. Therefore, A must be equal to 1.	6. (1,0)
7. The circuit translates as follows: $(\overline{X} \ \overline{Y})(Y \ \oplus \overline{Z})$. It simplifies to: $(X + \overline{Y})(YZ + \overline{Y} \ \overline{Z}) = XYZ + X \ \overline{Y} \ \overline{Z} + \overline{Y} \ YZ + \overline{Y} \ \overline{Y} \ \overline{Z} = XYZ + X \ \overline{Y} \ \overline{Z} + \overline{Y} \ \overline{Z} = XYZ + \overline{Y} \ \overline{Z} (X + 1) = XYZ + \overline{Y} \ \overline{Z}$	7. $XYZ + \overline{Y} \overline{Z}$
8. The expression simplifies as follows: $\overline{A} \ B + \overline{A} \ \overline{C} + \overline{A} \ \overline{B} + \overline{B} \ C + A \ \overline{C} + \overline{B} \ \overline{C} = \\ (\overline{A} \ B + \overline{A} \ \overline{B}) + (\overline{B} \ C + \overline{B} \ \overline{C}) + (A \ \overline{C} + \overline{A} \ \overline{C}) = \\ \overline{A} (B + \overline{B}) + \overline{B} (C + \overline{C}) + \overline{C} (A + \overline{A}) = \\ \overline{A} + \overline{B} + \overline{C} = \overline{ABC} (note that \ \overline{A} \ \overline{B} \ \overline{C} \text{ is not equivalent})$	8. <i>ABC</i>
9. By definition a simple path is a path with no vertex repeated. Choice A is not a valid path. Choice B has vertex B repeated. Choice C is a a simple path. Choice D is not a valid path.	9. C
10. A "1" is placed in the matrix when a path exists. Otherwise, the matrix contains a "0". $ \frac{A B C D}{A 1 1 0 1} $ $ \frac{B 1 0 1 1}{C 0 0 0 1} $	10. The matrix as shown at the left.