1. The last time the 2 loops are executed prior to ending, J has a value of 1 and K has a value of 9 since K assumes values of $3,5,7$ and 9 .
2. $\mathrm{B}(1,9)$ Therefore, $\mathrm{B}(1,9)$ is the last element modified
3. Without any simplification, the circuit translates as follows:

$$
A(\bar{A}+\bar{B})
$$

2. $A(\bar{A}+\bar{B})$
3. The circuit translates as follows :

$$
A+\bar{B} C
$$

Using DeMorgan's Theroem gives: $\bar{A}(\overline{\bar{B} C)}$. To be TRUE, both factors must be TRUE. A must always be 0 . The second factor must be FALSE since the negation will make it true. Two possibilities exist. Either (\bar{B}, C) equals $(*, 0)$ or $(1,1)$. There are 3 ordered triples that make the circuit TRUE.
4. The squaring the adjacency matrix produces all the paths of length 2. Summing the elements gives 9 paths of length 2.
4. 9

$$
\left|\begin{array}{lll}
1 & 1 & 1 \tag{r}\\
0 & 0 & 1 \\
1 & 0 & 0
\end{array}\right|^{2}=\left|\begin{array}{lll}
2 & 1 & 2 \\
1 & 0 & 0 \\
1 & 1 & 1
\end{array}\right|
$$

5. The cycles in the graph are: $\mathrm{ABCA}, \mathrm{ABCDA}, \mathrm{ACA}$ and ACDA
6. $(0,0,0),(0,1,0)$ and $(0,1,1)$
7. The circuit translates as follows: $(A+B) \bar{B}$.

To be TRUE both factors must be TRUE. B must be equal to 0 .
6. $(1,0)$

Therefore, A must be equal to 1 .
\qquad
7. The circuit translates as follows: $(\overline{\bar{X} Y})(Y \oplus \bar{Z})$. It simplifies to: $(X+\bar{Y})(Y Z+\bar{Y} \bar{Z})=X Y Z+X \bar{Y} \bar{Z}+\bar{Y} Y Z+\bar{Y} \bar{Y} \bar{Z}=$
7. $X Y Z+\bar{Y} \bar{Z}$ $X Y Z+X \bar{Y} \bar{Z}+\bar{Y} \bar{Z}=X Y Z+\bar{Y} \bar{Z}(X+1)=X Y Z+\bar{Y} \bar{Z}$
8. $\overline{A B C}$
$\bar{A} B+\bar{A} \bar{C}+\bar{A} \bar{B}+\bar{B} C+A \bar{C}+\bar{B} \bar{C}=$
$(\bar{A} B+\bar{A} \bar{B})+(\bar{B} C+\bar{B} \bar{C})+(A \bar{C}+\bar{A} \bar{C})=$
$\bar{A}(B+\bar{B})+\bar{B}(C+\bar{C})+\bar{C}(A+\bar{A})=$
$\bar{A}+\bar{B}+\bar{C}=\overline{A B C}$ (note that $\bar{A} \bar{B} \bar{C}$ is not equivalent)
9. By definition a simple path is a path with no vertex repeated. Choice A is not a valid path. Choice B has vertex B repeated. Choice C is a
9. C a simple path. Choice D is not a valid path.
10. A " 1 " is placed in the matrix when a path exists. Otherwise, the matrix
10. The matrix as contains a " 0 ". shown at the left.

