2001-2002	American Computer Science League		Contest #2
_001 _002	Classroom Division	Solutions	
1. This program finds the largest factor of X, less than X, by counting counting down from X until it finds a factor. The loop ends when C changes from zero.		1. 10	
2. $\overline{X}(X+\overline{Y}) + \overline{Y}(\overline{Y}+\overline{Z}) + \overline{Y} = \overline{X}X + \overline{X}\overline{Y} + \overline{Y}\overline{Y} + \overline{Y}\overline{Z} + \overline{Y} =$ $0 + \overline{X}\overline{Y} + \overline{Y} + \overline{Y}\overline{Z} + \overline{Y} = \overline{X}\overline{Y} + \overline{Y} + \overline{Y}\overline{Z} = \overline{Y}(\overline{X} + 1 + \overline{Z}) = \overline{Y}$		2. \overline{Y}	
3. $\overline{A} + AB + A\overline{B} = \overline{A} + A(B + \overline{B}) = \overline{A} + A = 1$. The 1 denotes that the expression is always TRUE. All 4 possible inputs must be listed.			3. (1,1), (1,0), (0,1), (0,0)
. Working from the inside out: RSHIFT-1 10100 = 01010 LCIRC-2 01010 = 01001 LSHIFT-2 01001 = 00100		4. 00100	
Consider the equation 0 OR a = 1 implies a 0 OR b = 0 implies b 1 OR c = 1 implies c 1 OR d = 1 implies c 0 OR e = 0 implies e	Let X=abcde. The equation becomes 00110 OR abcde = 10110. Consider the equation bit by bit. 0 OR a = 1 implies a = 1 0 OR b = 0 implies b = 0 1 OR c = 1 implies c can be either a 1 or a 0 1 OR d = 1 implies c can be either a 1 or a 0 0 OR e = 0 implies e = 0 (1, 0, *, *, 0) gives 4 possible solutions		5. 4

American Computer Science League

2001-2002

Contest #2

6. Change 567_8 to hexadecimal and subtract. A12 ₁₆ - 177 ₁₆ = 89B ₁₆ . 89B ₁₆ converts to 100010011011 ₂ .	6. 100010011011 ₂ .
7. $(\overline{X} + Y)(\overline{X} + \overline{Y}) = \overline{X} \ \overline{X} + \overline{X} \ \overline{Y} + \overline{X} \ Y + Y \ \overline{Y} = \overline{X} + \overline{X} \ \overline{Y} + \overline{X} \ Y + 0 = \overline{X} + (1 + \overline{Y} + Y) = \overline{X} + 1 = \overline{X}$	7. \overline{X}
8. $\overline{AB} + A(\overline{B+C}) = \overline{A} + \overline{B} + A \overline{B} \overline{C} = \overline{A} + \overline{B}(1 + A\overline{C}) = \overline{A} + \overline{B} = \overline{AB}$ Now if $\overline{AB} = 0$, then $AB = 1$ which implies $A = 1$ and $B = 1$. Therefore, the solution is in the form (1,1,*)	8. (1,1,1) and (1,1,0)
 9. Working from the inside out: RSHIFT-2 10011 = 00100 RCIRC-8 00100 = RCIRC-3 00100 = 00001 RSHIFT-2 00001 = 00100 	9. 00100
10. Let X = abcde. RSHIFT-1 abcde = 0abcd 0abcd OR 10110 AND 00101 = 00101 Since AND has precedence over OR 10110 AND 00101 = 00100 0abcd OR 00100 = 00101 Evaluating one bit at a time gives: a OR 0 = 0 implies a = 0 b OR 1 = 1 implies b = * c OR 0 = 0 implies c = 0 d OR 0 = 0 implies c = 1 e = * The 4 solutions take the form (0, * , 0, 1, *)	10. 4

Classroom Division Solutions