1. This program finds the largest factor of $X$, less than $X$, by counting counting down from X until it finds a factor. The loop ends when C changes from zero.
2. 10
3. $\bar{X}(X+\bar{Y})+\bar{Y}(\bar{Y}+\bar{Z})+\bar{Y}=\bar{X} X+\bar{X} \bar{Y}+\bar{Y} \bar{Y}+\bar{Y} \bar{Z}+\bar{Y}=$ $0+\bar{X} \bar{Y}+\bar{Y}+\bar{Y} \bar{Z}+\bar{Y}=\bar{X} \bar{Y}+\bar{Y}+\bar{Y} \bar{Z}=\bar{Y}(\bar{X}+1+\bar{Z})=\bar{Y}$
4. $\bar{Y}$
5. $(1,1),(1,0),(0,1)$, $(0,0)$
6. 00100

RSHIFT-1 $10100=01010$
LCIRC-2 $01010=01001$
LSHIFT-2 $01001=00100$
5. Let $\mathrm{X}=$ abcde. The equation becomes 00110 OR abcde $=10110$.

Consider the equation bit by bit.
0 OR $\mathrm{a}=1$ implies $\mathrm{a}=1$
0 OR $b=0$ implies $b=0$
1 OR c $=1$ implies c can be either a 1 or a 0
1 OR d=1 implies c can be either a 1 or a 0
0 OR e $=0$ implies $\mathrm{e}=0$
$(1,0, *, *, 0)$ gives 4 possible solutions
6. Change $567_{8}$ to hexadecimal and subtract. $A 12_{16}-177_{16}=89 \mathrm{~B}_{16}$. $89 \mathrm{~B}_{16}$ converts to $100010011011_{2}$.
6. $100010011011_{2}$.
7. $(\bar{X}+Y)(\bar{X}+\bar{Y})=\bar{X} \bar{X}+\bar{X} \bar{Y}+\bar{X} Y+Y \bar{Y}=\bar{X}+\bar{X} \bar{Y}+\bar{X} Y+0=$
7. $\bar{X}$
$\bar{X}+(1+\bar{Y}+Y)=\bar{X}+1=\bar{X}$
8. $\overline{A B}+A(\overline{B+C})=\bar{A}+\bar{B}+A \bar{B} \bar{C}=\bar{A}+\bar{B}(1+A \bar{C})=\bar{A}+\bar{B}=\overline{A B}$
8. $(1,1,1)$ and $(1,1,0)$

Now if $\overline{A B}=0$, then $A B=1$ which implies $A=1$ and $B=1$.
Therefore, the solution is in the form $(1,1, *)$
$\qquad$
9. Working from the inside out:

RSHIFT-2 $10011=00100$
RCIRC-8 $00100=$ RCIRC $-300100=00001$
RSHIFT-2 $00001=00100$
10. Let $X=$ abcde.

RSHIFT-1 abcde $=0$ abcd
Oabcd OR 10110 AND $00101=00101$
Since AND has precedence over OR
10110 AND $00101=00100$
Oabcd OR $00100=00101$
Evaluating one bit at a time gives:
a OR $0=0$ implies $\mathrm{a}=0$
b OR $1=1$ implies $\mathrm{b}=*$
c OR $0=0$ implies $\mathrm{c}=0$
d OR $0=0$ implies $d=1$
e = *
The 4 solutions take the form $(0, *, 0,1, *)$
9. 00100
10. 4

