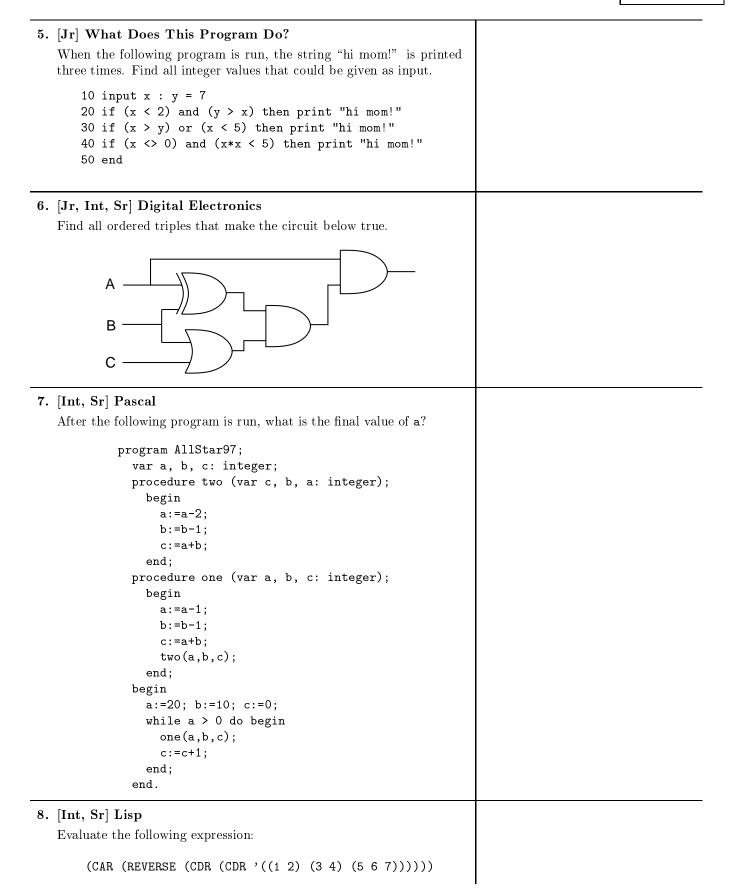
* 1996–97 All-Star Contest * Short Problems * Round #1 *


1. [Jr] BASIC Expressions	
Write a BASIC expression that is an exact translation of the following:	
Twice the difference of the product of A and B and the quotient of C and D	
Use the fewest number of parentheses as possible.	
2. [Jr, Int, Sr] Boolean Algebra	
List all of the following choices that are equivalent to the expression	
$(A \oplus B)\overline{(\overline{A} + B)(A + \overline{B})}$	
$(\mathbf{a}) \ \overline{A} \oplus B$	
(b) $\overline{A} + \overline{B}$	
(c) $\overline{A}B$	
(d) $A + B$	
$(\mathbf{e}) \ \ A \oplus B$	
 3. [Int, Sr] What Does This Program Do? If the following program prints the number 9 when it is run, list all possible integer inputs to the program. 10 input A : B=3 : C=1 20 if (A<=B) and ((C<a) (b<c))="" a="A+2</li" or="" then=""> 30 if (A<b) (b="" and="">C) then A = A+C</b)> 40 if ((A>C) and (A>B)) or (B>C) then A = A-C 50 if A>5 then A=A+2 else A=A+5 60 print A 70 end </a)>	
4. [Int, Sr] Prefix/Postfix/Infix Notation	
Let # represent the unary operation "greatest integer less than or equal to the value of its operand." For example, the postfix expression	
26 3 / #	
has a value of 8. Evaluate the following prefix expression:	
+ # / * 2 3 4 / # - 1 3 # / - ↑ 6 2 4 6	

American Computer Science League

*1996–97 All-Star Contest * Solutions * Round #1 *

1. The answer shown is the only correct answer.	2*(A*B-C/D)
2. The expression is simplified by applying DeMorgan's Law twice and then the definition of XOR:	
$(A \oplus B)\overline{(\overline{A} + B)(A + \overline{B})} = (A \oplus B)(\overline{(\overline{A} + B)} + \overline{(A + \overline{B})})$	
$=(A\oplus B)((\overline{\overline{A}}\cdot\overline{B})+(\overline{A}\cdot\overline{\overline{B}}))$	
$= (A \oplus B)((A\overline{B}) + (\overline{A}B))$	(e)
$= (A \oplus B)(A \oplus B)$	
$= (A \oplus B)$	
The only choice equivalent to $A \oplus B$ is choice (e).	
3. We can solve this program by trying small values, say between -10 and 10, looking for inputs that cause the program to print 9. If you follow this approach, you need to be able to convince yourself that all values less than -10 and greater than 10 won't work. Alternatively, work backwards, one line at a time:	
Line 50: After this line is executed, A must have a value of 9. If the then were executed, A must have started out equal to 7. If the else were executed, A must have started out with a value of 4.	
Line 40: After this line is executed, A must have a value of 4 or 7. The then is always executed because B>C. Thus, A must have started out with a value of 5 or 8.	3, 5, and 8
Line 30: After this line is executed, A must have a value of 5 or 8. If the then were executed, then A must have started out equal to 4 or 7. But these are both impossible, because A must be less than B. Therefore, the then was not executed, and A started out with a value of 5 or 8.	
Line 20: After this line is executed, A must have a value of 5 or 8. Consider a final value of 8. If the then were executed, A started out with a value of 6. But this is impossible, since A must be less than B; thus A started out equal to 8. Consider a final value of 5. If the then were executed, then A started out with a value of 3. This is OK. If the then were not executed, then A start out with a value of 5. This is also OK.	
4. The evaluation is as follows (a box is put around the part of the expression that is about to be evaluated):	
+ # / [* 2 3] 4 / # [- 1 3] # / - [+6 2] 4 6	
+ # <u>/ 6 4</u> / # -2 # / <u>- 36 4</u> 6	C
+ # 1.5 / -2 # / 32 6	.6
+ 1 / -2 # 5.333	the fraction $3/5$ is also acceptable
+ 1 / -2 5	
+ 14	
.6	

* 1996–97 All-Star Contest * Short Problems * Round #2 *

American Computer Science League

*1996–97 All-Star Contest * Solutions * Round #2 *

 5. In order for the string to be printed three times, it must be printed in lines 20, 30, and 40. From line 20, x = 1, 0, -1, -2, will cause the string to be printed. All of these values will cause line 30 to print the string. In line 40, both clauses of the if must be true for the string to be printed. The clause x<>0 eliminates 0 from the possible values of x. The clause x*x<5 is true only when x=1, -1, and -2. 	1, -1, and -2
6. The circuit can be represented by the Boolean Algebra expression $A((A \oplus B)(B + C))$ We could construct a truth table for this expression, but because it's an AND of three terms, it's worth trying to reason about it. The term A means that A must be true. This gives us 4 possible triples to consider: (1,0,0), (1,0,1), (1,1,0), and (1,1,1). The term $A \oplus B$ means that A and B must be different. This leaves just (1,0,0) and (1,0,1). The term $B + C$ means than either B or C must be true. This leaves just (1,0,1).	(1,0,1)
abcvalues of variables just after c is incremented in the main loop. 34 8 27 44 6 39 50 4 47 52 2 51 50 0 51 44 -2 47 34 -4 39 20 -6 27 2 -8 11 -20 -10 -9	-20
8. The evaluation goes from the inside to the outside: $(CDR '((1 2) (3 4) (5 6 7))) \Rightarrow ((3 4) (5 6 7)))$ $(CDR '((3 4) (5 6 7))) \Rightarrow ((5 6 7)))$ $(REVERSE '((5 6 7))) \Rightarrow ((5 6 7)))$ $(CAR '((5 6 7))) \Rightarrow (5 6 7)$	(567)

* 1996–97 All-Star Contest * Short Problems * Round #3 *

	1
9. [Jr, Int] Computer Number Systems Express the square of 878 ₁₆ in base 16.	
0. [Jr, Int, Sr] Bit String Flicking	
Find all values of x, 5 bits long, that make the following expression equal to 10100.	
(LSHIFT-2 (10101 OR x)) XOR (RCIRC-2 (11011 AND (LCIRC-2 x)))	
1. [Int, Sr] Recursive Functions Evaluate $f(22)$ given the following:	
$f(x) = \begin{cases} x + f(x+3) & \text{whenever } x \text{ is prime and larger than } 2\\ \frac{x}{2} * f(x-5) & \text{whenever } x \text{ is even} \\ x+1 & \text{otherwise} \end{cases}$	
2. [Sr] Data Structures	
If you built a binary search tree with the keys S A L T L A K E (in this order), you'd end up with a tree whose internal path length is 18. Suppose that you could swap up to 2 pairs of letters (e.g., the S with the first L and the T with the K) to insert the letters in a different order (e.g., L A S K L A T E, using the 2 swaps above). What is the minimum internal path length a resulting tree could have?	

*1996–97 All-Star Contest * Solutions * Round #3 * 9. We could convert the number to base 10, square it, and then convert back to base 16. Alternatively, we could do all the multiplication in base 16. We'll do the latter, but take advantage of the fact that $(a+b)^2 = a^2 + 2ab + b^2$ to make the multiplication simple. $878^2 = (800 + 78)^2 = 800^2 + 2 \cdot 800 \cdot 78 + 78^2$ $47B840_{16}$ $=400000 + 1000 \cdot 78 + 78^{2}$ $=400000 + 78000 + 78^2 = 478000 + 78^2$ $78^2 = (70 + 8)^2 = 70^2 + 2 \cdot 70 \cdot 8 + 8^2$ = 3100 + 700 + 40 = 3840Finally, 478000 + 3840 = 47B840. 10. Write x as abcde and simplify each side: Left side of XOR: (LSHIFT-2 (10101 OR abcde)) (LSHIFT-2 1b1d1) 1d100 Right side of XOR: (RCIRC-2 (11011 AND (LCIRC-2 abcde))) (RCIRC-2 (11011 AND cdeab)) 00000 and 00001 (RCIRC-2 cd0ab) abcd0 the term 0000* is also acceptable Now, these two values XOR'd together must equal 10100. That is, 1d100 XOR abcd0 = 10100. Look at each bit, from left-to-right: 1 XOR a = 1 implies a=0 d XOR b = 0 implies b=d 1 XOR c = 1 implies c=00 XOR d = 0 implies d=0, and thus b=0**11.** The evaluation is as follows: f(22) = 22/2 * f(17) = 11 * f(17)f(17) = 17 + f(20)f(20) = 20/2 * f(15) = 10 * f(15)1947f(15) = 16Working backwards, we have f(20) = 10 * 16 = 160, f(17) = 17 + 160 =177, and f(22) = 11 * 177 = 1947. 12. The shortest internal path length occurs when the binary tree is a complete tree. With 8 nodes, the shortest internal path length is 13. 13 Such a tree can be formed with just one swap: the K and the S. (Other exchanges will also produce a tree whose internal path length is 13.)

American Computer Science League

* 1996–97 All-Star Contest * Short Problems * Round #4 *

	mbly Language al value of C when the following program is run?	?
A B C TOP	DC 2 DC 50 DC 0 LOAD C ADD =1 STORE C LOAD B STURE B SUB C BG TOP END	
	s and Regular Expressions event strings of length 5 are generated by the fol- on: (WW+A)*CS*L	llowing
heap where eac is different than	Structures s S A L T L A K E into a <i>minimal heap</i> . Tha h node is less than or equal to its two children. the heap described in the ACSL Category Descr nodes were greater than their children.) Dra	(This cription

American Computer Science League

*1996–97 All-Star Contest * Solutions * Round #4 *

13. The high-level program equivalent to the program is as follows: A = 2 $B = 50$ $C = 0$ $TOP: C = C + 1$ $B = B - A$ $IF B-C > 0 THEN GOTO TOP$ END The following table shows the values of B and C just before the BG is executed: $\frac{B C}{48 1}$ $46 2$ $44 3$ $$ $20 15$ $18 16$ $16 17$	17
14. All strings must end with an L and must contain a C. Between the C and L, there are zero or more S's. Before the C, there's either nothing, or some combination of A and WW, for instance AWW, AA, or WWA. The complete list of 5-letter strings are as follows: CSSSL, ACSSL, AACSL, AAACL, WWCSL, WWACL, and AWWCL.	7
15. Here's what the tree looks like after each letter is added: $ \begin{array}{ccccccccccccccccccccccccccccccccccc$	L S L K